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Abstract—In this paper, we first study the performance of job
scheduling in a large parallel processing system where a job is
modeled as a concatenation of two stages which must be processed
in sequence. We denote Pi as the number of processors required
by stage ¢ and denote P as the total number of processors
in the system. The service time requirement of stage i, given
the required Pi processors, is exponentially distributed with
mean 1/4;. Hence, a job can be fully described by a quadruple
(Pr. P pt1, pt2). Three service disciplines which can fully utilize
all processors in the system are studied in this paper.

We first consider a large parallel computing system where
Max(P. %) > P >> 1 and Max(P. %) >> Min(P. %)
For such systems, exact expressions for the mean system delay
are obtained for various job models and disciplines. Our results
show that the priority should be given to jobs working on the
stage which requires fewer processors. We then relax the large
parallel system (i.e., I’ >> 1) condition to obtain the mean system
time for two job models when the priority is given to the second
stage. Moreover, a Scale-up Rule is introduced to obtain the
approximated delay performance when the system provides more
processors than the maximum number of processors required by
both stages (i.e., P > Max(P,. I;)). Lastly, an approximation
model is given for jobs with more than two stages.

Index Terms—High-concurrency stage, low-concurrency stage,
parallel processing system, processor sharing, Scale-up rule.

I. INTRODUCTION

N this paper, we first consider a parallel computing system

in which jobs are composed of two stages which must be
processed in sequence. In each stage, up to a given maximum
number of processors can be used concurrently and the number
of processors required by different stages need not be the same.
For instance, we can view a job as a program and a stage in a
job as a procedure in the program where each procedure can
be executed using a certain amount of processors concurrently.
The number of processors required by a procedure depends on
how many processors it can use in its algorithm. We denote
P; as the number of processors required by stage i and we
denote P to be the total number of processors in the system.
The service time of stage ¢ given the required P; processors
is exponentially distributed with mean 1/4u,. Hence, a job can
be fully described by a quadruple (P;, Pa, y11, j12). A general
concept of this kind of job model was first proposed in [11].
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For easier notation, we denote the low-concurrency stage
as the stage where the number of processors required equals
Min( Py, P»). Similarly, we denote the high-concurrency stage
as the stage where the number of processors required equals
Max( Py, P»). Hence, the job models considered in this paper
may be either 1) the low-concurrency stage precedes the high-
concurrency stage or 2) the high-concurrency stage precedes
the low-concurrency stage. These two job models are denoted
as the LH (Low-High) job model and HL (High-Low) job
model, respectively.

Other than considering the characteristics of jobs, we pro-
pose three service disciplines for such systems. The basic
principle of the service disciplines studied in this paper is
to fully utilize all processors such that we do not allow the
system to have idle processors while there are jobs waiting in
the queue. To achieve this, the system has to share processors
among jobs according to a service discipline. Two of the
disciplines studied in this paper use priority schemes which
assign the priority to a job according to which stage the job
is working on. The third discipline follows a straight First
Come First Serve rule. Hence the disciplines studied are 1)
priority given to jobs working on stage 1 with preemption, 2)
priority given to jobs working on stage 2 with preemption, and
3) FCFS without preemption. More details about job models
and service disciplines are given in the following section.

For the 2-stage job model, we first find the mean system time
of LH and HL job models under different kinds of disciplines.
From the obtained mean system time analysis, we then find
the best service discipline to minimize the mean system time
for both LH and HL job models. These results shed light
on designing the operating system for a parallel computing
system.

The paper is organized as follows. In Section II, we give
a detailed description to the job models and various service
disciplines. In Section 11, we assume the number of processors
required by the low-concurrency stage is far fewer than
that of the high-concurrency stage (i.e., Max(Py, P2) >>
Min( Py, P)) and we further assume the number of processors
in the system is no more than the number of processors re-
quired by the high-concurrency stage (i.e., P < Max (P, P,)).
The performance of various combinations of job models and
service disciplines are given and a comparison to find the best
service discipline is also provided. In Section IV, we drop the
Max(Py, Py) >> Min(Py, P;) condition and find the delay
performance using the discipline which gives the priority to
jobs working on stage 2 with preemption. In Section V, we
propose a Scale-up Rule which gives a good approximation
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result of the mean system time when the number of processors
in the system is more than the number of processors required
by the high-concurrency stage (ic., P > Max(Py, Py)).
Section VI contains an approximation model for jobs with
more than two stages. The concluding remarks are given in
Section VIL

II. MODEL DESCRIPTION AND ASSUMPTIONS

In our model, jobs arrive to the system according to a
Poisson process with rate \. Whenever a job in a stage requires
more processors than the system currently can provide, this
job simply uses all the processors available to it with an
appropriately elongated stage service time such that the work
done for that stage remains unchanged. That is, the service
time for that stage will still be exponentially distributed but
with a larger mean. For example, if a job in a stage can use
10 processors for one second of work and if there are only 5
processors available, it will use these 5 processors and require
two seconds of work to complete its work. This elongated
stage service time with 5 processors ensures the conservation
of the work required in that stage. As mentioned earlier, this
is to fully utilize all the processors in the system. An example
of an LH job model is shown in Fig. 1(a) and an HL job
model is shown in Fig. 1(b) where Max(Py, P,)/Min(Py, P;)
equals m.

The first two service disciplines considered in this paper
are a version of priority queueing with preemption. If the total
number of processors occupied by higher priority jobs in the
system is less than P, those processors which are not needed
by these higher priority jobs are assigned to lower priority jobs.
The assignment of priorities to a job is based upon which stage
the job is currently working on. Hence, when a job finishes
the first stage and advances to the second stage, the priority
ranking of this job will be changed.

For instance, if the priority is assigned to jobs working on
stage 2, then a job advances from stage 1 to stage 2 will gain
a higher priority. Moreover, in cases where P, > P, and jobs
working in stage 2 have higher priorities, a job advances from
stage 1 to stage 2 will achieve a higher priority and will need
more processors to work on stage 2. In this case, this job will
preempt processors from those jobs working on stage 1 until
either it has gained enough processors for stage 2 or there
are no more jobs working on stage 1. Those jobs with all
processors preempted will be pushed back to the head of the
queue waiting for available processors. The third discipline
considered in this paper does not allow processor preemption
and follows a First Come First Serve rule.

Furthermore, for all three disciplines, if there are more than
one job wanting to share processors in the same stage, we will
first satisfy the processor requirement of the first job before
allocating processors to the second job and so on. This process
continues until all processors are allocated to jobs or until
all jobs are satisfied. If there are jobs which do not receive
processors, they stay in the queue of that stage. Hence, the
service discipline for each stage is a FCFS scheme for all
disciplines. The details of the service disciplines follows.
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Fig. 1. LH and HL job models. (a) LH job model. (b) HL job model.

A. Priority Given to Jobs Working on Stage One with Preemption

A job is allowed to receive service as long as there are
available processors in the system following a preemptive
priority service discipline. A job’s priority decreases when it
finishes stage 1 and enters stage 2. Under such a preemptive
priority scheme, when a job enters the system while there
are no available processors in the system, it can preempt
processors from jobs working on stage 2, if there is any, to
start servicing its stage 1.

B. Priority Given to Jobs Working on Stage Two with Preemption

In this discipline, a job’s priority increases when it finishes
stage 1 and enters stage 2. Hence, when a job enters stage 2
and requires more processors than it currently possesses from
stage 1, it can preempt processors from jobs working on
stage 1, if there is any, to start servicing its stage 2.

C. FCFS Discipline without Preemption

The discipline introduced here is a FCFS discipline where
preemption is not allowed. A job is allowed to receive service
as long as there are available processors in the system. Further,
the processors occupied by a job cannot be preempted by any
other jobs. However, if there are processors released by a job,
those jobs already in service which need more processors have
a higher priority than jobs in the queue to occupy the released
processors. A job may release processors by either advancing
from the high-concurrency stage to the low-concurrency stage
or by finishing stage 2 and leaving the system.

III. PERFORMANCE EVALUATION OF DIFFERENT
JOB MODELS UNDER VARIOUS DISCIPLINES

In this section, we consider a large parallel computing
system where Max(Pi, P} > P >> 1 and Max(P;, Py) >>
Min( Py, P,). Before further discussion, we will first examine
the cases when P < Max(Py, P;). When P < Max(Py, P»),
the high-concurrency stage can actually use only P processors,
hence the quadruple job description should be modified. For
instance, if stage 2 is the high-concurrency stage (i.e., P, >
P > Py), then the quadruple (Pi, Py, pu1, po) should be
modified as (P1, P, 11, P/Pajiz). That is, stage 2 can use all
P processors for an elongated service time. Hence, we will
only consider the case when P = Max(P;, P,) without loss
of generality.
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To give an example for the job model discussed in this
section, the low-concurrency stage can be regarded as a
serial stage which requires only one processor and the high-
concurrency stage as a parallel stage which can use all
processors in the system. For such a system, job models
shown in Fig. 1(a) and (b) can be approximated as shown in
Fig. 2(a) and (b), respectively since the number of processors
required by the low-concurrency stage is negligible compared
to that required by the high-concurrency stage. For the rest of
this section, we will use these approximated job models for
analysis. It will be shown in Section IV-A and Fig. 6 and when
Max(Py, P;) > 20Min( Py, P,), the delay performance of the
job models shown in Fig. 1 is very close to the job models
shown in Fig. 2, which will be analyzed in this section.

For such a system, the low-concurrency stage requires a neg-
ligible amount of total processors while the high-concurrency
stage requires all P processors in the system. Therefore, if
the high-concurrency stage has a higher priority, then there
can be at most one job working on the high-concurrency stage
since it will occupy all processors in the system. Under such
a circumstance, all other jobs in the system will be forced to
wait in the queue since there are no available processors left.

On the other hand, if the low-concurrency stage has a higher
priority, then all jobs working on the low-concurrency stage
can work concurrently and they will have no effect on jobs
working on the high-concurrency stage because the processors
taken by jobs in the low-concurrency stage are negligible.
That is, in this case, there can be as many jobs working
on the low-concurrency stage and one job working on the
high-concurrency stage at the same time.

In this section, we will give results of the mean system
time of LH and HL job models under various disciplines.
Clearly, there will be six models from a combination of two
job models and three scheduling disciplines. These six models
are classified into three groups in according to the service
disciplines. Note that the formula of infinite server queues are
approximations to the actual system.

A. Priority Given to Jobs Working on Stage One with Preemption

In this section, we give the priority to jobs working on
stage 1. For the two job models, we denote T; g and Ty as
the mean system time for the LH job model and the HL job
model, respectively. These notation will be used throughout
this section.

Theorem 1: For systems with priority given to jobs working
on stage 1 with preemption, the Laplace Transform, Y7, (s),
of the system time of the HL job model is shown at the bottom
of this page where p; equals A/u; and G*(s) is the root of
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Fig. 2. The approximated LH and HL job models when P = Max(F;.

Py) >> Min(Py, I%). (a) LH job model. (b) HL job model.

Proof: See Appendix A.
Theorem 2: For systems with priority given to jobs working
on stage 1 with preemption,

1/ + 1/ A
Typ = /i1 //2+ - _ @)
1-pm w3 (1= p1)
1 1/‘112
Trg=—+ ———. 3
L /L1+1—/\//L2 )

Proof: Equation (2) can easily be derived from (1). To find
T'r 1, since stage 1 has higher priority, stage 1 can be regarded
as an M/M/oc system. Further, since jobs in stage 1 occupy
no processors at all, stage 2 can be regarded as an M/M/1
queue. Hence, T g can be shown as in (3). Q.E.D.
Note that A\/ui(= p;) is the system load for the HL job
model since only stage 1 will contribute workload to the
system. Similarly, A/u2(= p2) is the system load for the LH
job model. These can be seen from (2) and (3).

B. Priority Given to Jobs Working on Stage Two with Preemption

For systems which give priorities to jobs working on stage 2
with preemption, we first derive the z-transform of the number
of jobs in the system as given in the following equation.

H2 — A po — A
Pz)= — - ¢ A lz—=14+ln ——
(2) s exp( /11 [z + In |/\z—u2|]>

where P(z) is defined as the z-transform of the number of
jobs in the system. The proof of (4) is provided in Appendix B.
From (4), we obtain the following theorem.
Theorem 3: For systems with priority given to stage 2 with
preemption,

_ V/ps + 1/ po

the following quadratic equation: Tin = 1= X u2 ®)
S+ A+ i1 1/m 1 )
G*(s)” - L o)+ B =0, Tyr = —F—+ —. 6
(5) L Ge5) 4 2 L e VR ©
2 2
. Hipe(l —p
Yiu(s) = et W

G*(8)[s + (1 = p)][S + A = AG*(5) + pa][s — AG*(5) + 1]
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Proof: From (4), we can easily derive the mean number
of customers in the system for the LH job model and we can
hence prove (5) using Little’s result [12). Again, to find Ty, is
easy since stage 1 performs like an M/M/1 queue and stage 2
is like an M/M/oo queue. Q.E.D.

C. First Come First Serve Discipline

The performance of First Come First Serve discipline for
the HL job model is the same as when the priority is given to
stage 2 with preemption and the reason follows. Since jobs in
stage 1 possess more processors than they will need in stage 2,
hence whenever a job finishes stage 1 and enters stage 2, it
does not need to ask for more processors than it already
possesses. Actually it will release processors to other jobs.
Hence, all jobs in stage 2 will always have enough processors.
Therefore, the FCFS discipline for the HL job model is the
same as the case when the priority is given to stage 2.

However, for the LH job model, the exact result is not
obtained. Nonetheless, we can easily show that the perfor-
mance is worse than the case when priority is given to
stage 1 with preemption by the following reason. For FCFS
discipline, whenever there is a job in stage 2, new arriving
jobs cannot start receiving service for the low-concurrency
stage since all processors are occupied by old jobs in stage 2.
Hence, these new jobs would have to wait in the queue before
receiving service for the low-concurrency stage. However, if
the discipline used is to give priority to stage 1, then these new
arriving jobs can immediately start receiving service for the
low-concurrency stage and will not have to wait in the queue.
Moreover, jobs in stage 1 do not really occupy processors;
hence, it does not interfere with jobs working on stage 2.
Therefore, the mean system time for the case when priority is
given to stage 1 with preemption for the LH job model is better
than that using the FCFS nonpreemptive service discipline.
Applying the similar argument, we can show that the LH job
model performs better than the case when priority is given to
stage 2 with preemption. From these conclusions, we arrive at
the following results for the FCFS system.

1//L1 1

Typ = —1M L~ 7
HEL 1=Xpy o 2 @

1/ + 1/ po 1 1/ps
—>T — 8
1— X/ LH>/L1+1—/\//LQ ®

D. Performance Comparison Among Various Disciplines

Comparing (3), (5), and (8), we find that for LH job models,
the system which gives priority to stage 1 with preemption has
the smallest mean system time. On the other hand, for HL job
models, we find that the system which gives priority to stage 2
with preemption and FCFS without preemption achieve the
smallest average system time by comparing (2), (6), and (7).
From the results derived above, we arrive at the following
conclusions:

1) FCFS nonpreemptive discipline is not the optimal dis-
cipline.
2) The best service discipline depends on job models.

3) For the disciplines considered in this paper, the priority
should be given to the low-concurrency stage which
requires fewer processors.

Conclusion 3) above may not seem obvious. As a known
fact, the best service discipline to minimize the mean system
time is to give higher priority to jobs with less remaining
service time if that is known. In our 2-stage job model, jobs
working on stage 2 clearly are closer to completion than jobs
working on stage 1; hence, the priority should be given to
jobs working on stage 2 for both job models. However, from
conclusion 3) stated above, we know that the priority should
be given to stage 1 in the LH job model. This is opposite to
our intuitive reasoning.

The reasons for this can be explained as follows. The prob-
lem of giving the priority to the high-concurrency stage is that
by so doing, whenever there is a job in the high-concurrency
stage, all jobs in the low-concurrency stage will be forced
to wait since all processors are occupied by the job in the
high-concurrency stage. Once all jobs in the high-concurrency
stage finish services, all the processors will be released to
jobs waiting to receive service for the low-concurrency stage.
Since the number of processors required by all jobs working
in the low-concurrency stage is small compared to the number
of processors in the system, therefore, most of the processors
will be idle. It is this waiting time in the low-concurrency
stage and the inefficiency of utilizing processors which causes
the poor performance.

On the other hand, if the priority is given to the low-
concurrency stage, then all jobs in the low-concurrency stage
would not have to wait in any case. Further, jobs in the
high-concurrency stage can also receive service since the
number of processors occupied by jobs in the low-concurrency
stage is negligible. Hence, by giving the priority to the
low-concurrency stage obtains a better delay performance
for all job models. An example is shown in Fig. 3 for
(P1, P2, piy, p2) = (1,20,1,1) and P = 20. Fig. 3 shows that
the system with priority given to jobs working on stage 1 has
the best performance while the performance of the system with
FCFS discipline is very close to it. In Fig. 3, the mean system
time for the FCFS discipline is obtained by simulations.

This conclusion can be further extended to a 3-stage job
model where a job is composed of a low-concurrency stage
followed by a high-concurrency stage followed by another
low-concurrency stage as shown in Fig. 4. From the results
obtained in Theorems 2 and 3 and by defining pa to be A/pusz,
we can easily obtain the mean system delay for the following
cases.

Case 1: If the highest priority is given to jobs working on
stage 3, the next priority to jobs working on stage 2, and the
lowest priority to jobs working on stage 1; we have

7o Ym 41 ps
LHL = =~ P

Case 2: If the highest priority is given to jobs working on
stage 3, the next priority to jobs working on stage 1, and the
lowest priority to jobs working on stage 2; we have

1/
Trarp =1/m + Lna + 1/us
1—po

+1/pa.
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Fig. 3. The comparison for three service disciplines for (Py, P, pu,
p2) =(1,20,1,1) and P = 20.
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Fig. 4. A 3-stage job model with one high-concurrency stage and two
low-concurrency stages.

Case 3: If the highest priority is given to jobs working on
stage 1, the next priority to jobs working on stage 2, and the
lowest priority to jobs working on stage 3; we have
/pe +1/pa A

1-p2 u3(1 ~ pa)’°

Trpr=1/m +

Note that in Case 1, we give the priority to jobs closer
to completion while in Case 2 the priority is given to jobs
working on stages which require fewer processors. From these
results, we can clearly see that Case 2 has the smallest mean
system time. Hence, our conclusion in this section also works
for 3-stage job models with one high-concurrency stage.

IV. DELAY ANALYSIS BY RELAXING
Max(Py, P») >> Min(Py, P>) CONDITION

In this section, we relax the Max(P;, P;) >> Min(P, P,)
condition as required in the previous section. As before, we
define m to be Max(Py, P,)/Min(Py, P,) and denote P as
the total number of processors and assume P = Max(P;, P),
i.e., the number of processors in the system equals the number
of processors required by the high-concurrency stage. For
cases when P > Max(Pi, P;), a good approximation will
be given after the introduction of the Scale-up rule, which
will be described in the following section. In this section, we

will only consider the discipline which gives the priority to
stage 2 with preemption.

A. The LH Job Model

In this subsection, we consider the situation when the low-
concurrency stage precedes the high-concurrency stage. This
job can be modeled as shown in Fig. 1(a). The difference
between this model and the one given in the previous section
is that in this model there can be at most [m] jobs working
concurrently on the low-concurrency stage if there is no job
working on the high-concurrency stage. As before, if there is
a job working on the high-concurrency stage, all jobs in the
low-concurrency stage will be forced to wait in the queue.

To draw a Markov chain for such a model, since P, = mP;,
we can normalize the number of processors required by stages
by using P = 1 and P, = P = m without affecting the
result. For example, a job model with P, = 2, P, = 6, and
P = 6 should have the same performance with the job model
with P, = 1, P, = 3, and P = 3. We define p(k,j) to be
the probability that there are & jobs in stage 1 and j jobs in
stage 2 in the system. Since the priority is given to stage 2,
hence whenever j > 0, then all £ jobs in stage 1 have to wait
in the queue. Furthermore, all jobs in stage 1 will be paused
whenever j = 1; hence no more job can advance from stage 1
into stage 2. Hence, the value of j canonlybe Oor 1. If 5 = 0
and k£ < m, then all jobs in stage 1 are in service. If j = 0
and k£ > m, then there are m jobs working on stage 1 and the
other k —m jobs are waiting in the queue. Hence, the Markov
chain of this model can be shown in Fig. 5.

Note that the overall system load can be expressed as
A(mypy + p2)/mpug pa, hence the condition for a stable system
is A < mpqpe/(muy + pz). We obtain the z-transform of the
number of jobs in the system in the following equations.

For the LH job model as shown in Fig. 1(a), the z-transform
of the number of jobs in the system is

fhfhe
P =
(2) —=A22 + muipe — mAp z — Aoz + A222
m-—1
Y (m—k)p(k,0)2* ©)
k=0
where p(k,0) for 0 < k& < m — 1 can be obtained from (10)
to (13).
= M2 — MAL = Ao
“(m ~ k)p(k,0) = (10
k=0 Hi1p2
(A
p(1,0) = 225 #2) 0 ) an
M
A2 [N+ p2)® + A
2,0) = 0,0). (12
#(2,0) S (0,0). (1)
For k > 3
(A4 p2)A+ (k= Dpd]
k,0) = k—1,0
p(k,0) K p( )
k=]
kpypea
2
- k—3,0). 13
i p( ) (13)
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Fig. 5.

The proofs of (9) to (13) are included in the Appendix C.
From the above results, we can easily find the mean number
of jobs in the system. Using the mean number of jobs in the
system and Little’s result {12], we can find the mean system
time as follows.

m—1
Hajh2
i A(mppte — mApy — Apg) ; ( )p(k,0)

A—mpy —
_ mpy — f2 (14)
ML — MALy — At

where p(k,0) for 0 < k < m — 1 can be obtained from (10)
to (13).

Here we will compare the results shown in (5) and (14).
For both cases, the job model considered are the LH job
model. As mentioned in Section III, the results obtained from
(5) should be a good approximation to that from (14) when
m >> 1. Fig. 6 gives the delay performance of an example
with (Py, Py, pi1, p12) = (1,20,1,1) using (14) and another
curve derived from (5) using p; = po = 1. Fig. 6 shows
that these two curves are very close to each other. Intuitively,
we know that the results derived from (5) and (14) will be
even closer for a larger m. This confirms our assumption in
Section III.

B. The HL Job Model

We study the case when the high-concurrency stage precedes
the low-concurrency stage in this subsection. As defined
above, we define p(k, j) to be the probability that there are k
jobs in stage 1 and j jobs in stage 2 in the system. Since the
priority is given to stage 2, hence whenever there are j jobs
working in stage 2 (i.e., j = mn = P), then all k jobs in stage 1
are forced to wait in the queue. Therefore, there can be at most
m jobs in stage 2. Unfortunately, we are not able to solve the
general case for an arbitrary value of m. However, the result
for m = 2 can be derived and are given at the bottom of this
page. The Markov chain for m = 2 is shown in Fig. 7.

To prove (15) is easy but tedious. We omit the details which
can be found in [7].

Markov chain for LH job model.

30
—t— Exact
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E 20 1
£l
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2
v
A
=
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Fig. 6. Comparing (5) and (14) for m = 20.

V. SCALE-UP RULE

The results derived in previous sections are for cases when
the number of processors in the system equals the maximum
number of processors required by the job. This assumption
simplified the Markov chain dramatically, hence making the
analysis feasible. However, this analysis is infeasible when
the number of available processors is greater than the max-
imum number of processors required by the job (ie., P >
Max(P;, P;)). In order to solve this problem, we propose the
Scale-up Rule which gives a very good approximation result
without adding any analytical complexity. An application
of the Scale-up rule to the 2-stage job model when P >
Max(P;, P;) is provided in this section. For the rest of the
paper, all simulation results are represented by 90% confidence
interval using ¢-distribution and the approach used here is the
“replicate/deletion” approach as indicated in [20, p. 551).

There has been considerable effort paid to the analysis
of the mean waiting time of an M/G/n queue. Some of
them provided bounds [2], [8] while some of them provided
approximations [1],[4],[5],[6],[15],{16]. In this paper, we
focus our attention of the results obtained in [13] and [14]

(313 + papa + 2p3) N — o (13 — papie — 43) X — 4p3 (13 + 3pa o + 2013)

Tur =

pa (A + 2p2) (41 + 2p2) (Mpe1 + 2 a2 — 21 f10)

(15)
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Fig. 7.

which provided an approximation for such a system. In [1]
and [3] this model was extended to achieve a better result.
We define Wyy/G/» as the mean waiting time for an M/G/n
system. In [13] and [14] the following approximation for
WG n Was suggested as shown in (16). This expression
proved to be a very good approximation as some simulation
results in {7] demonstrated.

~ Wnmyc

Wwm/a/m = “Wni/M/n- (16)

Wai/m/1

A queueing model with a varying number of required
processors has been studied in some previous works [17]—[19].
However, in these works, none of them tried to make a full
use of all processors. That is, only our model will not allow
cases where there are available processors idle in the system
while there are also jobs waiting in the queue.

In this subsection, we will extend (16) to the 2-stage job
model when P > Max(P;, P»). Although the number of
processors required by a job varies during its execution on
different stages, we were surprised, and pleased, to discover
that the rule which applies to the classical queueing system as
stated in (16) also applies in our model. In other words, if we
have to find the mean waiting time for a parallel system with
P > Max(Py, Py), we will first find the mean waiting time
for the system with P’ processors where P’ = Max(Py, Ps)
using the method derived in the previous sections. From the
result obtained for P/ = Max(Py, P,), we apply the following
Scale-up rule to obtain the result for system with P processors
(P> P").

Scale-up Rule: Given a system with P processors and the
job model ( Py, Py, ji1, pu2), we want to find the mean waiting
time if P > Max(Py, Py). We first obtain the mean waiting
time of the system assuming the number of processors in
the system, denoted as P’, equals Max(P;, P»). This result
can be obtained from the previous section. We denote the
mean waiting time for such a system with P’ processors as
Wwyamy1(p), where p is the system load and JM stands for
“Job Model.” For the original system with P processors and
denoting P/P' as n (n > 1), we define Wy n/n(p) to be
the mean waiting time of the system with P = nP’ processors.

Markov chain for HL job model.

Similarly, we define Wy/n/q(p) to be the mean waiting time
of an ordinary M/M/n queueing system with mean service
time equals 1/ + 1/pt0. The Scale-up Rule says that

~ Wa/anyi(p)

= 17
Waym/i(p) 7

Watyamy, () -Wwnymy, ()

Since the parameters in the right hand side of (17) are all
known values, hence Wyi/ym/n(p) in the left hand side can
be calculated. The approximation result is a combination of
the use of the exact result from Section IV and the use of
the Scale-up rule. From the obtained mean waiting time, we
can easily obtain the mean system time by adding into the
mean service time which equals 1/j7 + 1/ 2. Some examples
are given to show how good these approximation results are.
Figs. 8 to 11 give a comparison between simulation results
and approximation results using the Scale-up rule where the
priority is given to stage 2. The approximation results are
obtained by first exactly finding the mean system time for
P = 2 using the technique given in Section IV, then the
scale-up rule is used to obtain the results for P > 2. Two
cases are given for two different job models. One is described
as (Py, Pa, p11, 112) = (1,2,1,1) and the other is described as
(P1y P2, p1, pp2) = (2,1,1,1). Figs. 8 and 9 show the results
when P = 4 and Figs. 10 and 11 show the result when
P = 10. From these figures we show that the Scale-up Rule
is indeed a very good approximation method.

VI. AN APPROXIMATION FOR THE GENERAL CASES

As we mentioned earlier, to exactly evaluate the perfor-
mance of a general case with N (N > 2) stages is extremely
difficult. In this section, using the exact solution of the
2-stage model and the scale-up rule, we give an approximation
method for any general processor-time task graph and any
number of processors in the system. In this model, we give
higher priority to jobs closer to completion. That is, jobs in the
last stage (the Nth stage) have the highest priority while jobs
in the first stage have the lowest priority. Again, preemption is
assumed. The simulation of this approximation method shows
reasonably good results.
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g. 8. An approximation result for job model (1,2.1.1) and P = 4.
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Fig. 9. An approximation result for job model (2.1.1.1) and P = 4.

Given a processor-time task graph, we divide the processor-
time task graph into two pieces such that the mean service
time for each piece is the same. In each piece, we average the
work load over its service time to find the average number of
processors needed. By so doing, we achieve a 2-stage model
as analyzed in Section IV. We use this modified 2-stage model
as the basis for the approximation model.

If the first stage requires fewer processors than the second
stage in the modified model, we use the result obtained in
Section IV-A. An example is shown in Fig. 12. In Fig. 12(a),
the processor vector for this 4-stage job is [3,1,3,9] and the
corresponding time vector is [1/2,1/2,1/2,1/2]. By dividing
the time vector into two equal pieces, the first two stages of
Fig. 12(a) will be merged into the first stage of the modified
model as shown in Fig. 12(b). Similarly, the last two stages of
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Fig. 10. An approximation result for job model (1,2.1.1) and P = 10.
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Fig. 11.  An approximation result for job model (2,1,1,1) and P = 10.
Fig. 12(a) will be merged into the second stage of the modified
model as shown in Fig. 12(b). In order to make the workload in
Fig. 12(b) to be the same as in Fig. 12(a), the processor vector
of Fig. 12(b) is {2,6] and the time vector is [1,1]. Figs. 13
and 14 show the approximation results for this example given
12 and 45 processors in the system, respectively. From these
figures, we see that the approximation results are very close
to the simulation results.

If the first stage requires more processors than the second
stage in the modified model, there is one more step to be
done in the approximation method. An example is given in
Fig. 15. In Fig. 15(a), the processor vector is [3,9, 3, 1] and the
time vector is [1/2,1/2,1/2,1/2]. Applying the same rule as
we did in Fig. 12, we convert Fig. 15(a) into Fig. 15(b) such
that the processor vector and the time vector of Fig. 15(b)
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Fig. 12. (a) An example with [Py. Py  P3. Py.pty. pio piz. pg] = [3.1.

3.9.1/2,1/2.1/2.1/2]. (b) An approximation model for (a).
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Fig. 13.  An approximation result for Fig. 12(a) and P = 12.

are [6,2] and [1,1], respectively. Since we can analyze the
system only when the number of processors required in the
first stage is exactly twice of that in the second stage, we have
to modify the modified 2-stage model by using a modified
3-stage model. The first stage of the modified 3-stage model
[as shown in Fig. 15(c)] is the same as the first stage of the
modified 2-stage model [as shown in Fig. 15(b)]. The second
stage of the modified 3-stage model is modified such that it
requires exactly half of the processors required in the first
stage (of the modified 3-stage model) and the total workload
required in the stage is the same as that of the second stage
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Fig. 14.  An approximation result for Fig. 12(a) and P = 45.

from the 2-stage model. The third stage in the 3-stage model is
used to adjust the no-queueing service time such that it is the
same for the modified 2-stage model and the modified 3-stage
model.

The processor vector and the time vector for Fig. 15(c) are
[6,3,0] and [1,2/3,1/3], respectively. Although the model in
Fig. 15(c) is different from the model described in Section V-
B, it can be solved by using the result from Section IV-B.
Notice that the third stage has the highest priority and requires
no processors from the system at all; the existence of stage
three has no impact on stages one and two. Hence, we
can solve this problem by first neglecting the third stage in
Fig. 15(c) and apply the results obtained from Section 1V-B;
from this result, we add the mean service time of stage three
to it to get the overall mean response time. Figs. 16 and 17
show the approximation results for this example given there
are 12 and 45 processors in the system, respectively.

VIL

In this paper we are able to find the average system delay
of various job models and disciplines when Max(P, P) >
P >> 1and Max(Py, P;) >> Min(Py, P;) in a large parallel
processing system. Further, we achieve the following conclu-
sion that the priority should be given to jobs working on the
low-concurrency stage to achieve a better delay performance.
This priority assignment scheme remains true for 3-stage job
models with a high-concurrency stage preceded and followed
by low-concurrency stages. By dropping the Max(P;, Py) >>
Min(P1, P) condition, we also obtain the mean system delays
for cases when the priority is given to jobs working on
stage 2. A Scale-up Rule is further proposed which gives very
good approximation results for systems when the number of
processors in the system is greater than Max(Py, P,). Finally,
an approximation model for the general cases with N (N > 2)
stages is included which shows reasonably good results.

CONCLUSIONS
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Fig. 15. (a) An example with [Py, Py, P, Py, pi1, 2, 3, 4} = (3.9,

3,1,1/2,1/2,1/2,1/2]. (b) The first step toward approximation model for
(a). (c) The second step toward approximation model for Fig. 15(a).

APPENDIX A

A. Proof of Theorem 1

Proof: For the HL job model, we can regard stage 1 as
an M/M/1 queue. Hence, we have the Laplace transform of
the system time for stage 1, denoted as Y7*(s), given in [9,
p. 195]

wm(l —p1)

e =gy pa(l=p1)

(A1)

For stage 2, the system time can be found by using the delay
cycle analysis given in [10, p. 110]. When stage 1 is idle, jobs
in stage 2 have an exponential service time distribution with
parameter uo. However, when stage 1 becomes busy, jobs in
stage 2 will all be paused until stage 1 becomes idle again and
resume the work. Clearly, the system time for stage 2 can be
modeled as a delay cycle. The distribution of the initial delay
cycle can be found in the following.

It is shown in [9] in page 176 that in an M/G/1 system,
the probability that a departure finds k£ jobs in the system
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Fig. 16. An approximation result for Fig. 15(a) and P = 12.
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Fig. 17. An approximation result for Fig. 15(a) and P = 45.

equals the probability that there are k jobs in the system in
equilibrium. Hence,

Prla departure from stage 1 finds & jobs still in stage 1]
=(1-p)p}. (A2)

A departure from stage 1 to begin receiving service in
stage 2 finds k jobs still in stage 1 has an initial delay cycle
whose Laplace transformed distribution, denoted as G(()k)(s),
can be represented as

k
G¥)(s) = (L) .

. (A3)
s+ui)  s+pe

From the delay cycle analysis formula [10], we have the
Laplace transform of the system time for stage 2, denoted as
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Fig. 18.

Y} (s), given as

V()= D -(1=pi)ph - G (s + A = AG*(5)
k=0

Il

o) k
= (1 — k. lad
];) (1= p1)pt L+A—/\G*(s)+m
. M2
s+ A= AG*(s) + po
1
=p2(l=p1)-

s+ A= AG*(s) + 2
) S+ X = AG*(8) + 1y
8= AG*(8) + 1
_ mpa(l = pr)
G*(s)[s + X — AG*(s) + pa][s — AG*(8) + pa]

where p; equals A/ji; and G*(s) is the Laplace transform of
the busy period distribution of stage 1.

From (A1), (A2), and (A3), the Laplace Transform, YiL(s),
of the system time of the HL job model equals Yi(s) - Yo' (s)
as shown in (1). Q.E.D.

B. Proof of (4)

Proof: By defining state (ni,n3) as ny jobs in stage 1 and
n2 jobs in stage 2, we have the Markov chain given in Fig. 18
and the following equilibrium balance equations:

(A +Eun)p(k,0) = Ap(k = 1,0) + pap(k, 1) k> 1
(B1)
A+ p2)p(k = 1,1) = kpyp(k.0) + Ap(k — 2,1) k> 2
(B2)
/\[J(O, U) = “277(07 1) (B3)
(/\ + /U'Q)p(ov 1) = Ulp(lv 0) (B4)

We define p(k) to be the probability that there are totally £
jobs in the system and define the following notation:

P(z) = Zp(k)zk, Py(z) = Zp(k,O)zk,
k=0 k=0

o

Pi(z) =) plk, 1)~

k=0

Markov chain for LH job model.

Since p(k) = p(k,0) +p(k — 1.1), it can easily be shown that
P(z) = Py(2) + 2P1(2). From (B1) and (B3) we have

APy(z) + =z % Po(z) = AzPy(2) + uaPy(z). (B5)
From (B2) and (B4) we have
(/\+[LQ)P1(Z) = H1 %P{)(Z)-%/\ZPK,Z) (B6)

From (BS5) and (B6) we have the following differential equa-
tion for Py(z).
{
(Az — po)u é Po(z) + MA + p2 — A2)Po(2) = 0.

Solving this linear differential equation we obtain the follow-
ing explicit expression of Py(z):

Po(2) = e exp((Am1)(z = In|Az — po))

where ¢ is a constant yet to be determined. From (BS) and
(B6) we have

(B7)

A
Pl(Z) = *ﬂg - Po(z).

Combining (B7), (B8), and P(1) = 1 we find ¢ to be

(B8)

U2

e= = X exp((=/paa)(1 = (s — N).

From the above results we have the z-transform of the number
of jobs in the system as shown in (4). Q.E.D.

C. Proof of (9) to (13)

Proof: From the Markov chain given in Fig. 6, we have

(A4 kp1)p(k,0) = Ap(k —1,0) + pop(k, 1)

1<k<m (&)
(A+mpy)p(k,0) = Ap(k — 1,0) + pap(k, 1)

k>m (C2)

(At p2)p(k — 1.1) = Ap(k - 2,1) + kpip(k, 0)
2<k<m (C3)

(A+p2)pk—1,1) = Ap(k —2,1) + mu1p(k, 0)
k>m (C4)
/\])(07 0) = “2]7(01 1) (C5)
(A + 12)p(0, 1) = p1p(1,0). (Co)
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We define p(k) = Pr[k jobs in the system] =
p(k —1,1). We further define

P(z) = p(k)2",
k=0

p(k.0) +

Po(z) = Y p(k,0)2",
k

=0
Pi(z) — Zp(k, 1)zF.
k=0

Hence, we have P(z) = Py(z)+ zP;(z). From (C1) and (C2)
we have

m-—1

(A4 myp1 — A2)Po(z) = p2Pi(z) + iy Z
k=0

< (m = E)p(k,0)2%. (CT)
Similarly, from (C3) and (C4) we have
m—1
[(A+ p2)z = A%|Pu(2) = mpa Po(2) — i Y
k=0
< (m ~ k)p(k,0)z*. (C8)
From (C7) and (C8) we have
A
Pi(z2) = = \a Fo(z). (&)

From (C7), (C8), and (C9) we have P(z) as shown in (9).
The remaining job is to find all p(k,0) for 0 < k < m — 1.
Using (9) and P(1) = Py(1) + P;(1) = 1, we can obtain (10).
Equations (11), (12), and (13) can easily be obtained from
arranging (C1), (C3), (CS), and (C6). From (10) through (13)
we are able to find all p(k,0) for 0 <k <m — 1. Q.E.D.
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